This site uses cookies to offer you a better browsing experience. By continuing to navigate through this site or by clicking Approve, you consent to the use of cookies on your device as described in our privacy notice.
Bench top capillary rheometer
Bench top capillary rheometer

Bench top capillary rheometer

Combining many advanced features associated with larger floor-standing models, the Rosand RH2000 system can be configured for research measurements through to Quality Control applications.

Enquiry

Key applications

  • Characterization of polymer or suspension rheology across a range of shear rates and temperatures
  • Simulation of extensional viscosity dominated processes such as fiber spinning, blow molding, film blowing and thermoforming
  • Assessment of extrusion behavior for processes such as injection molding and hot melt extrusion
  • Evaluation of material behavior at process relevant shear rates such as high-speed coating and printing applications
  • Detection of polymer instabilities such as melt fracture and thermal degradation
  • Measurement of material elasticity and related properties such as die swell

Industry applications

  • Polymers
  • Coatings
  • Ceramics
  • Metals
  • Pharmaceuticals
  • Sealants
  • Foods
  • Inks

How it works

The Rosand RH2000 capillary rheometer system enables controlled extrusion (by volumetric flow) of a sample through a high precision die of known dimensions, to characterize material flow properties typically under conditions of high force (or pressure) and/or high shear rate. Using the twin bore barrel option and a ‘zero length’ die configuration allows simultaneous determination of shear viscosity and extensional (elongational) viscosity as a function of shear (or deformation) rate.
A capillary rheometer system comprises several key components to enable robust, reliable and accessible rheological measurements for a particular sample or application:

  • Capillary rheometer base unit. Includes the barrel with bore(s) to load the sample – the bore diameter and barrel material must be compatible with the material(s) under test. The base unit also includes a head unit, which has a mechanical connection to the pistons which are used to extrude the sample. Key system functions of drive force and piston speed range are controlled by the base unit.
  • Die and pressure transducer combination. The die is mounted at the bottom of the barrel bore, and its dimensions define the applied shear field. A melt pressure transducer is mounted in the barrel to measure the resultant pressure at the die entrance as the material is extruded. The die dimensions and pressure transducer range must be appropriate to the sample type and test under consideration.
  • Temperature and/or environmental control options. Accurate control of barrel temperature is essential since rheological properties are a strong function of temperature. For thermally-sensitive materials, thermal equilibrium times and inert test environments are critical considerations to ensure reliable data.
  • Instrument software. Rheological testing can be, by its nature, relatively complex to set up. The Rosand Flowmaster software interface is designed for simplicity and ease-of use with intuitive test set-up methodology in conjunction with a ‘live’ instrument graphic at run time reporting all key test and measurement parameters.

Features and benefits

  • Easily interchangeable melt pressure transducers to cover all test requirements – configured with low noise, triple-stage amplifiers for optimized measurement sensitivity at the die entrance.
  • Proprietary bi-modal speed control algorithms to optimize shear rate measurement range for a particular die.
  • Precise sample temperature control using three independent zone heaters, with 10 times DIN accuracy platinum resistance thermometers. High temperature (500°C maximum) and cooling coil options also available.
  • Unique swivel head design gives easy access to the rheometer barrel for sample loading and instrument cleaning.
  • Range of optional barrel sizes and barrel materials to permit measurement of thermally-sensitive, chemically-aggressive or aqueous-based samples.
  • Wide range of high precision tungsten carbide dies as standard to cover all materials and test types.
  • Precise sample temperature control using three independent zone heaters, with 10 times DIN accuracy platinum resistance thermometers. High temperature (500°C maximum) and cooling coil options also available.
  • Nitrogen purge option available to minimize sample degradation.
  • Easy to use Flowmaster software with full range of tests and analyses for shear and extensional viscosity, as well as determining sample stability, wall slip and melt fracture.
  • Single and twin bore barrel options for cost effective routine measurement capability through to dual measurements for simultaneous assessment of absolute shear viscosity and extensional (elongational) viscosities.
  • Maximum drive force (up to 20kN) and maximum speed (up to 1200mm/min) capabilities enable a wide range of shear rates, and correlation with many real material processing conditions.
  • Rigid one-piece cantilever frame design providing extreme mechanical strength and stiffness for a compact bench top unit.

Bench top capillary rheometer for research to QC testing

The Rosand RH2000 bench top capillary rheometer provides highly flexible measurement capabilities and configuration options for a wide variety of applications - from polymer melts to pharmaceutical processing, and from foodstuffs to inks and coatings.

Technical Resources

capable of meeting most test requirements

Bench top capillary rheometer

VIEW

Understanding stress measurements

Understanding stress measurements

VIEW

Technical Specifications

Technical Specifications

VIEW

Capillary Rheometer Backed with Rheological Experience

Rosand RH2000

VIEW

Contact Us at +9714 2152799

We can help you with a solution tailor to your specific need.